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SUMMARY

A three-dimensional analysis for fully viscous subsonic internal flow is
eva'uated. The analysis, designated PEPSIG, solves an approximate form of the
Navier-Stokes equations by an implicit spatial marching procedure. Results of
calculations are presented for laminar flow through two different circular
cross-sectioned 180 degree bends, and for laminar and turbulent flow through
circular and square cross-sectioned 22.5-22.5 degree S-ducts. Quantitative
comparisons with experimental data are shown for all cases. Special emphasis
is placed on verifying the ability of the analysis to accurately predict the
distorted flow fields resulting from pressure-driven secondary flows.

INTRODUCTION

The presence of three-dimensional subsonic internal flow is relatively
common in many of today's airbreathing propulsion systems. Curved centerlines
and changes in cross-sectional shape are often present, resulting in the gen-
eration of complex three-dimensional secondary flows and significant flow dis-
tortion. In addition, viscous effects are usuaiiy important, with the boundary
layer thickness often comparable to *he duct radius. These phenomena have im-
portant effects on overall propulsici system performance.

Conventional boundary layer metihods will not work for these complex flows.
A full Navier-Stokes solution could te used, but would require large amounts
of computer time and storage. However, by making certain approximations to the
Navier-Stokes equations, such as uneglecting streamwise diffusion, a set of
equations can be derived for fully viscous internal flow that can be solved by
forward marching in space. An analysis method using tnese equations to compute
three-dimensional subsonic flow through curved ducts with super-elliptic cross-
sections was developed by Briley and McDonald (ref. 1) and by Levy, McDonald,
Briley, and Kreskovsky (ref. 2), and was designated PEPSIG. A preliminary
evaluation of the PEPSIG method was presented by Towne and Ancderson (ref. 3).
However, in that evaluation orly qualitatfve comparisons were made with data.
In addition, several changes have since been made to the analysis by Levy,
Briley, and McNo~ald (ref. 4).

The objective of the present study, therefore, was to evaluate and verify
the most recant version of the PEPSIG analysis by making detailed guantitative
comparisons between predicted results and benchmark experimental data. Special
emphasis was placed on testing the ability of the analysis to accurately pre-
dict the distorted flow field resulting from pressure-driven secondary fiows.



GOVERNING EQUATIONS

In this analysis, the flow is computed by a single sweep spatial marching
procedure which solves an approximate form of the Navier-Stokes equations. It
is assumed that the flow is primarily in the direction of the duct centerline,
with transverse secondary flow. This allows two basic assumptions to be made.
The first is that second derivatives in the primary flow direction are negli-
gible. The second is that the pressure in the primary, or streamwise, mgmentum
equation can be represented by the sum of a known _hree-dimensional pressure
field and a one-dimensional correction computed as part of the marching proce-
dure to account for viscous blockage. When these two assumptions are applied
to the Navier-Stokes equations, a set of equations can be derived that can be
solved by forward marching in the primary flow direction.

The details of the derivation of the governing equations have been presen-
ted elsewhere (refs. 1, 2, and 4). For completeness, however, a brief discus-
sion is presented here. The equations are first written in a centerline-based
orthogonal reference coordinate system denoted by x3, x2, and x3, with cor-
responding velocities vg, wg, and ujy. The x3 direction is the primary flow
direction, and is aligned with the duct centerline at each marching step. The
x] and xp directions are normal to the duct centerline and define the trans-
verse, or secondary, flow plane. The primary momentum cquation is then given

by
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This equation, and the others to be presented in this section,.are taken
directly from reference 4. Here h is the metric scale coefficient associated
with the primary direction (The metric sca]e coeff1c1ents for the trans-
verse directions are both unl%y) Also, p; »X3) is the known three-
dimensional pressure field and p, = pv } is the un nown one-dimensional
viscous blockage correction. In th1s study, p; was computed using a three-
dimensional potential flow analysis, thus bringing elliptic effects due to
geometry into the solution.

The secondary velocities v, and wg are split into irrotational
and rotational components. The continuity equation can then be written as
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Here ¢ 1is a scalar potential corresponding to the irrotational component of
the secondary velocity.

The transverse momentum equations are cross-differentiated and combined to

form an equation for the transport of streamwise vorticity in the primary flow
direction, given by
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Here ¢ 1is the stream function, or vector potential, corresponding to the
rotational component of the secondary velocity, and @ is the veorticity in
the x3 direction.

The fourth equation is simply the definition of q written in terms of y.
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The energy equation is eliminated by assuming constant total enthalpy. For tur-
bulent flow, an algebraic mixing length turbulence model is used.

The above equations are transformed into a non-orthogonal body-fitted co-
ordinate system. They are then solved by forward marching in the streamwise
direction from an initial station, where the flow profiles are known, by an im-
plicit finite-difference technique. The boundary conditions that are applied
result in no-slip at the walls, and symmetry at the symmetry plane. Details of
the solution procedure can be found in references 1, 2, and 4.

COMPUTED RESULTS

The results of the PEPSIG analysis have been compared with experimental
data for a variety of geometric configurations and flow conditions. In this



section, results are presented and discussed for the following cases: (1) in-
compressible laminar flow through two different circular cross-sectioned 180
degree bends tested by Agrawal, Talbot, and Gong (ref. 5); (2) incompressible
laminar and turbulent flow through a circular cross-sectioned 22.5-22.5 S-duct
tested by Taylor, Whitelaw, and Yianneskis (ref. 6); and (3) incompressible
Taminar and turbulent flow through a square cross-sectioned 22.5-22.5 S-duct
also tested by Taylor, Whitelaw, and Yiannes-is (ref. 7). All of these data
are of benchmark quality, with streamwise and cross-flow velocities measured
using laser-doppler velocimetry. PEPSIG results for other configurations are
presented by Anderson (ref. 8) and by Vakili, et al. (ref. 9).

180 Degree Bend

The two geometries tested in reference 5 are shown in figure 1. Both have
a cross-section radius r of 1.905 cm (0.75 in.). They had centerline radii
R of 13.335 cm (5.25 in.) and 38.1 cm (15.0 in.), corresponding to radius
ratios R/r of 7 and 20, respectively.

R/r = 7. - The first results to be presented are for the R/r = 7 bend.
The flow was laminar, with a Reynolds number Re of 242 based on the cross-
section radius r and the average velocity u, corresponding to a Dean number
De of 183. The Dean number is defined as De = 2 Re 4/r/R. With a 20x20 mesh
in haif the cross-section (taking advantage of symmetry), and 181 streamwise
marching steps, 1.7 minutes of CPU time were needed on a Cray-1 computer.

The computed secondary flow pattern after 60 degrees of turning is shown
in figure 2. Each arrow in this figure represents the direction and magnitude
of the secondary velocity at the tail of the arrow. This is the classic pat-
tern for flow in a curved pipe. The low energy flow near the wall migrates
circumferentially away from the outside, or pressure side, of the bend and
toward the inside, or suction side. The higher speed flow in the core region
moves toward the outside of the bend due to centrifugal effects. A pair of
counter-rotating vortices is thus established. This secondary flow pattern
persists through the length of the duct.

The resulting flow distortion is shown in figure 3 in the form of contours
of constant streamwise velocity. These results are presented at the same sta-
tions used in the experiment. The boundary layer initially thickens slightly
on the outside of the bend due to the pressure increase there as the flow en-
ters the bend. By the second station, at 30 degrees, the effect of the second-
ary flow is apparent in the thickening of the boundary layer on the inside of
the bend. By 60 degrees of turning the secondary flow has caused significant
flow distortion. A pocket of low speed flow has formed on the inside of the
vend, displacing the region of maximum velocity toward the outside of the bend.
The results at the final two stations are similar.

In the experiment of reference 5, data were taken at five streamwise sta-
tions. At each station, streamwise velocity profiles were measured along the
five data lines shown in the inset to figure 4. The computed Streamwise ve-
Tocity profiles along these data lines are compared with the data in fiqure 4.
Computed results are shown for both 20x20 and 40x40 cross-sectional meshes;
however, the effect of greater mesh resolution for this case is negligible.



For both meshes, the agreement between the PEPSIG results and the data is
excellent.

The computed and experimental secondary velocity profiles are presented
in figure 5. These results, both computed and experimental, are for slightly
different flow conditions. The Reynolds and Dean numbers were 183 and 138,
respectively. The distance between adjacent data lines in figure 5 corresponds
to a v/u value of 0.36. The agreement between theory and experiment is gen-
erally very good.

R/r = 20. - For the R/r = 20 case, the flow was laminar with a Reynolds
number of 1263 and Dean number of 565. Several different meshes were used.
For a 50x50x226 mesh, 13.1 minutes of CPU time were used on a Cray-1 computer.

The computed secondary flow pattern after 84 degrees of turning is shown
in figure 6. The basic pattern is similar t¢ that seen in the R/r = 7 case,
but the boundary layers are thinner, the secondary velocities are not as large,
and the vortices are tighter. The computed streamwise velocity contours are
shown in figure 7. Again, these results are qualitatively similar to those in
the R/r = 7 case. However, the flow is more distorted, and becomes distorted
after less turning.

In figures 8(a) and (b), the computed streamwise velocity profiles are
compared with the data. (The results along data line 5 are not shown because
of problems encountered in interpolating the computed results in the high ve-
locity gradient region near the wall.) In figure 8(a}, results for both 25x25
and 50x50 cross-sectional meshes are shown. A total of 226 points were used in
the streamwise direction, with ae = 0.5 degrees for ¢ between 0 and 45 deg-
rees, and 80 = 1.0 degree for o greater than 45 degrees. The agreement is
generally very good for both meshes. In fact, the 25x25 mesh gyives better re-
sults than the 50x50 mesh at o = 108 degrees. However, the coarser me-: is
unable to resolve the velocity peak near the inner wall at ¢ = 35 degrees seen
along data lines 2 and 3. In figure 8(b), the results for the same 50x50x226
mesh are shown along with results for a 50x50x181 mesh with a9 = 1.0 degree
for the entire duct. With the larger streamwise step size, the analysis is
again unable to resolve the inner wall velocity peak at o = 35 degrees.

These results indicate that proper mesh resolution in both the transverse and
streamwise directions is critical in correctly predicting the initial develop-
ment of the secondary flows.

Finally, in figure 9 the computed and experimental streamwise velocity
contours are compared after 84 degrees of turning. The computed results are

for the 50x50x226 mesh. The agreement between theory and experiment is
excellent.

Circular S-Duct

The circular cross-sectioned S-duct geometry tested in reference 6 con-~
sisted of two 22.5 degree circular arc bends, as shown in figure 10. The cross-
section diameter D was 48 mm and the centerline radius R was 336 mm, for a
ratio R/D of 7.



Laminar flow. - For the laminar flow case, the Reynolds number based on
cross-section diameter D and average velocity u was 790, corresponding to
a Dean number of 211. With a 20x20x80 mesh, this case required 0.8 minutes of
CPU time on a Cray-1 computer.

The computed secondary velocities near the inflection and exit planes are
shown in figure 11. In the first bend the pressure-driven secondary flow pat-
tern typical of curved pipes is set up. In the second bend, the cross-flow
pressure gradients change sign, tending to attenuate the secondary flows set up
in the first bend. In fact, by the time the exit plane is reached, a vortex-
type motion has been set up in the lower half of the duct (i.e., near the inner
wall of the second bend) that is in the opposite sense as that in the first
bend. However, as noted in references 6, 7, and 10, the distortion of the
streamwise flow in the first bend causes the generation of streamwise vorticity
in the top half of the second bend that is in the same sense as that already
present, in accordance with the Squire and Winter formula for the development
of streamwise vorticity. The vortices set up in the first bend are thus sus-
tained, or even intensified, in the second bend and become concentrated near
the top of the duct.

The effect of the secondary flows on the streamwise flow is shown by the
streamwise velocity contours in figure 12. The boundary layer along the bottom
of the duct initially thickens due to the adverse pressure gradient there as
the flow enters the duct. By the time the second station is reached, just
ahead of the inflection plane, the secondary flows have caused the boundary
layer in the top half of the duct to thicken significantly. Through the in-
flection region an adverse pressure gradient exists along the top of the duct,
and the analysis predicts a small region of separated flow. This separation
region has no appreciable effect on the rest of the flow, and the "FLARE" ap-
proximation {ref. 11) is used to allow the streamwise marching analysis to con-
tinue. In the second half of the duct the concentration of the vortices near
the top causes a severely distorted flow field. In addition, the secondary ve-
lTocities near the wall in the bottom half of the duct cause the boundary layer
there to thicken. The flow at the duct exit is as distorted, or more distor-
ted, than it would be in a unidirectional bend with the same total amount of
turning.

In figure 13, the computed streamwise velocity profiles in the symmetry
plane are compared with the data. Analytical results are shown for both
20x20x80 and 40x40x80 meshes. Both give very good agreement with the data,
and the effect of greater mesh resolution is negligible.

Turbulent flow. - The Reynolds number for turbulent flow in the circular
S-duct was 48,000, corresponding to a Dean number of 12,828. With a 50x50x80
mesh, this case required 4.8 minutes of CPU time on a Cray-1 computer.

The computed secondary velocities near the inflection and exit planes are
shown in figure 14. The physical phenomena here are the same as in the laminar
flow case. However, the boundary layers are much thinner, resulting in gener-
ally lower secondary velocities. The vortices are also somewhat more concen-
trated and nearer the top of the duct. The streamwise velocity contours are
shown in figure 15. Again, except for the thinner boundary layers, these re-
sults are qualitatively similar to the laminar results.



In figure 16, the computed and experimental streamwise velocity profiles
in the symmetry plane are compared with .he data. In contrast to the laminar
case, mesh resolution for the turbulent case has a significant effect on the
results. With the 50x50x80 mesh, the PEPSIG results agree very well with the
data. With the 25x25x80 mesh, however, the thin boundary layers and secondary
flow vortices are not resolved well enough for the analysis to predict the
distorted flow region at the top of the duct.

Square S-Duct

The square cross-sectioned S-duct geometry of reference 7 also consisted
of two 22.5 degree circular arc bends, as shown in figure 10. The cross-section
width D was 40 mm and the centerline radius R was 280 mm, for a ratio R/D
of 7, the same as the circular cross-sectioned S-bend. Since the PEPSIG com-
puter code is presently limited to super-elliptic cross-sections, the square
cross-section was represented by a super-ellipse with an exponent of 10.

Laminar flow. -~ For the laminar flov case, the Reynolds number based on
cross-section width D and average velocity u was 790, corresponding to a
Dean number of 211, the same as in the circular cross-sectioned laminar flow

. case. With a 20x20x111 mesh, this case required 1.2 minutes of CPU time on a
Cray-1 computer.

The computed secondary velocities near the inflection and exit planes are
shown in figure 17. The important physical phenomena for this case are the
same as for the circular cross-sectioned case, and the secondary flow patterns
are very similar. A pair of counter-rotating vortices is set up in the first
bend. In the second bend, these vortices become concentrated near the top of

tne duct, and the near-wall secondary velocities in the lower half of the duct
change direction,

The computed streamwise velocity contours are shown in figure 18. These
results are, again, very similar to those in the circular cross-sectioned
S-duct. In the first bend, the boundary layer in the top half of the duct
thickens because of the secondary flows. In the second bend, the concentration
of the vortices near the top of the duct again causes a severely distorted flow
field. Small regions of separated flow were predicted for this case along the
top of the duct near the inflection plane and along the bottom of the duct near
the exit plane, where adverse pressure gradients exist.

The computed and experimental streamwise velocity profiles in the symmetry
plane are compared in figure 19. Both the 20x20x111 and 40x40x111 mesh results
agree very well with the data. The 20x20x111 case shows some undesirable wig-
gles, however, at tre last two stations in the middle of the duct where the
mesh resolution is poor.

Turbulent flow. - The Reynolds and Dean numbers for the turbulent flow

case were 40,000 and 10,690, respectively. With a 50x50x111 mesh, this case
required 7.7 minutes of CPU time on a Cray-1 computer.

The computed secondary velocities <ear the inflection and exit planes are
shown in figure 20. As in the circular cross-sectioned case, these results are



basically similar to the corresponding laminar results, but with thinner bound-
ary layers and generally lower secondary velocities. However, the vortices at
the top of the duct have essentially disappeared by the time the exit plane is
reached. In addition, in the second bend the streamwise velocity contours for
turbulent flow, shown in figure 21, are shaped differently than for laminar
flow. Near the top of the duct they have a gentle "W" shape, with the low
speed flow extending furthest into the core region a short distance away from
the symmetry plane. In the Taminar flow case, in contrast, the low speed flow
extended furthest into the core region exactly in the symmetry plane. The
shape of these contour lines is in 2greement with that found experimentally.

In figure 22 the computed and experimental streamwise velocity profiles
in the symmetry plane are compared with the data. Computed results are shown
for both 25x25x111 and 50x50x111 meshes. The 50x50x111 mesh gives slightly

better agreement with the data than the 25x25x111 mesh, although the differer-
ces are small.

CONCLUDING REMARKS

For the configurations studied, the PEPSIG analysis gave quantitatively
accurate results for both laminar and turbulent flow when sufficient mesh reso-
lution was used. In particular, the analysis correctly predicted the complex
physical phenomena and distorted flow fields that occur in S-shaped ducts. For
the cases with thick inlet boundary layers, 20x20 cross-sectional meshes were
sufficient. However, for the thin boundary layer cases a 50x50 cross-sectional
mesh was generally needed for accurate results. Proper mesh resolution in both
the transverse ard streamwise directions was especially important in regions
where the secondary flows were initially developing.

The PEPSIG analysis is very fast compered to the alternative, a full
Navier-Stokes calculation. For the results presented in this paper, the cur-
rent PEPSIG computer code processed 600-700 grid points per second on the
Cray-1 computer. (The analysis is approximately 10 times slower on an IBM 370/
3033). In reference 12, a time of 0.028 seconds per grid po'nt per time step
is reported for a three-dimensional problem solved by an efficient full Navier-
Stokes procedure on an IBM 370/3033. Assuming 100 time steps for a converged
solution, and a speed-up factor of 10 between the IBM and Cray, the Navier-
Stokes procedure would process 3.6 grid points per second. The PEPSIG analysis
is thus approximateiy 150-200 times faster, for comparable accuracy, than an
efficient Navier-Stokes procedure.
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locity profiles in symmetry plane for iaminar flow in
22.5 - 22.5 square S-duct,
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Figure 20, - Computed secondary velocities for turbulent flow in 22,5 - 22 5 square S-duct,
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Figure 21. - Computed streamwise velocity contours for turbulent tiow in
225 - 225 square S-duct.
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Figure 22, - Computed and experimental stream-
wise velocity profiles in symrietry plane for
turbulent flow in 22,5 - 2.5 square S-duct.



